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Photoelectric effect
→ Solar cells

Quantum mechanics has fundamentally changed our understanding

of matter and revolutionized modern science and technology!

Transistor effect 
→ Chip

Superconductivity 
→ Maglev train

Giant magnetoresistance 
→ Hard disk

Quantum Mechanics Revolution

2025
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Matrix 

Mechanics

Heisenberg Dirac

100-Year 
Development
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First-principles calculation

 One of the most important and challenging problems in science
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Schrödinger equation of many-body interacting systems

First-principles calculation: Based on the fundamental principles of
quantum mechanics, it predicts the properties of matter by solving
the Schrödinger equation without relying on empirical parameters.



Density functional theory (DFT)

Solve the Schrödinger equation for interacting electrons of matter

Kohn-Sham DFT: map to an auxiliary problem of non-interacting 
electrons with interacting density

If you don’t like the answer, change the question.

Predict materials properties from first principles

6



From quantum mechanics to materials discovery

Materials 
Discovery

Material prediction and design Theory, experiment and computation
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Atomic structure

Optical 
properties

Mechanical 
properties

Magnetic 
properties

Thermal 
properties

Electronic 
properties

Theory Experiment

Computation



From quantum mechanics to materials discovery

QAH
insulator

Axion
insulator

Quantum spin Hall insulators

Intrinsic topological magnetic materials Negative Hubbard U

New-type Ising superconductivity 

Lu7Fe14O34

Theory：PRL 123, 126402 (2019) 
Science 367, 1454 (2020)
Acc. Mater. Res. 2, 526 (2021)

Theory：PRL 111, 136804 (2013) Google citation: 1500
Nat. Mater. 14, 1020 (2015) 
Nat. Mater. 16, 163 (2017) 

Nat. Mater. 17, 1081(2018) 
Nat. Phys. 14, 344 (2018)
PRL 121, 126801 (2018)

Theory: Science Advances 5, eaaw5685 (2019) 
Chin. Phys. Lett. 36, 076801 (2019)
Nat. Mater. 19, 522 (2020)   PRL 125, 086401 (2020)

Theory: under review at PRL
Exp.: Yang Zhang, Zhen Chen, Jing Zhu
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Google citation: 1200



Challenges of first-principles calculation

Chip design

Improve accuracy Enhance efficiency

Bottlenecked by the accuracy-efficiency dilemma

Time

Space
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High throughput first-principles calculations are applied to build 
materials databases, but they are too expensive to create bigdata 

Current databases: ~106 stable solid materials only 

How to can we obtain materials big data?

Challenges of first-principles calculation

10

(118 elements in the periodic table )



2024 Nobel Prize in Physics: 

Materials modeling and discovery are among the 
most important applications of neural networks.

AI-driven materials discovery: Critical challenges

11

AI-driven 
materials 
discovery

Big materials 
database

First-principles 
calculation

Limited amount of 
materials data

Low efficiency of 
traditional algorithms

Complex structure–
property relationships

First principle + AI AI + Physics
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• Traditional scientific computation

• Deep learning accelerated scientific computation

Physical 
principles

Mathematical 
formula

Numerical 
Simulation

(Time-consuming)

First-principles methods + AI

Develop efficient and intelligent first-principles methods
13

力学
性质

热学
性质

光学
性质

电学
性质

磁学
性质

Massive
data

Train inference

(Efficient)

Object 
quantities



Physics: Based on theory and models

Concise, rigorous, and highly interpretable

AI + Physics
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AI: Relying on data and algorithms

Complex, flexible, and poorly interpretable

Physics-based AI

Use fundamental principles 
and laws of physics

Simplify AI models

Improve accuracy and 
generalization ability

Key problem: How to properly incorporate prior knowledge into
the design of neural networks?



DeepH-pack

Deep-learning DFT Hamiltonian (DeepH)

H. Li, et al. Nat. Comput. Sci. 2, 367 (2022) arXiv: 2104.03786

Locality: Learn from small structures and generalize to large structures
Symmetry: Further enhance the generalization capability

“Compress DFT”into neural networks 

Atomic structure

Electronic structure

Mechanical

Electronic

Thermal

Optical

Magnetic

15

DFT Hamiltonian as a function of material structure {ℛ}

 Integrate important physical priors into deep learning

Energy or force fields

properties



Localized basis: sparseness

Nearsightedness (or locality)
Only 𝐻𝐻𝑖𝑖𝑖𝑖 between neighboring atom pairs (within 𝑅𝑅C) are nonzero. 

Ab initio tight-binding Hamiltonian

Only information of neighborhood (within 𝑅𝑅N) is relevant. 

𝐻𝐻DFT for localized basis 

𝑟𝑟𝑖𝑖𝑖𝑖 < 𝑅𝑅C
16



DeepH: Enhance the performance by locality

A prior knowledge Technical insight

Local electronic properties only affected 
by neighboring chemical environment

Integrate the locality principle
into the design of neural networks

𝑹𝑹𝒄𝒄

 Short-range interatomic interactions
 Learn from small structures, 

generalize to study large structures
 𝑂𝑂 𝑁𝑁  computation complexity

Graph neural networks:
 Crystal structure → crystal graph
 Atom→ node; atom pair → edge
 Message passing among neighbors

17



DeepH: Enhance the performance by symmetry

A prior knowledge Technical insight

Rotation 𝑹𝑹

Rotation covariance of H

Covariant 
relation

Introduce local coordinates 

Global coordinate: rotation covariance

Local coordinate: rotation invariance

 Covariant transformation of H 
upon structural rotation

 Challenging for neural-network 
training and inference

 Change rotation covariance to 
invariance by local coordinates

 Enhance the performance of DeepH
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H. Li, et al., Nat. Comput. Sci. 2, 367 (2022)



Application: twisted van der Waals materials

Hamiltonian 
matrix

for twisted
structures

Train

Hamiltonian 
matrixDFT

Non-twisted structures

Properties

DeepH

Learn from non-twisted systems  Study materials of arbitrary twist angles

4 × 4 supercell, 300 random 
configurations for training

19



Maintain first-principles accuracy while improve the computational 
efficiency by several orders of magnitude

Magic-angle twisted bilayer graphene

20

DFT: VASP (plane-wave, PAW) 

DeepH: learned from OpenMX

DFT (105~106 CPU hours) vs. DeepH (~102 CPU hours)

H. Li, et al. Nat. Comput. Sci. 2, 367 (2022) arXiv: 2104.03786

Wenhui DuanYong Xu



T. Bao, R. Xu, et al., arXiv:2404.06449

Deep-learning database of twisted materials
DeepH models for twisted bilayer vdW materials: 
Over 100 materials, all with sub-meV accuracy,

showcasing the method’s robustness

21
Wenhui DuanYong Xu



Application example: Twisted bilayer MoTe2

22

tMoTe2

Chern number 1st 2nd 3rd

VASP 1 1 -2
DeepH 1 1 -2

DeepH vs. OpenMX: MAE 0.09 meV

0.88° tMoTe2 (25,314 atoms) 

3.89° tMoTe2 (1,302 atoms)

Commun. Phys. 7, 262 (2024) 22



Recent developments of DeepH

23

DeepH-pack

DeepH
Proof-of-principle
arXiv: 2104.03786
Nat. Comput. Sci. 2022

DeepH-E3
Equivariant
neural networks
Nat. Commun. 2023

xDeepH
Magnetic materials
Nat. Comput. Sci. 2023 
Cover story

DeepH-hybrid
Hybrid functionals
Nat. Commun. 2024

DeepH-2
Transformer
architecture
arXiv: 2401.17015

DeepH-Zero
Unsupervised
Learning
Phys. Rev. Lett. 2024 
Editor’s Suggestion

DeepH-PW
Plane-wave DFT
Nat. Comput. Sci. 2024

DeepH-DM
Density matrix
arXiv:2406.17561

1st-generation

Prototype

More intelligent

General capability

Beyond DFT

Large model

More universal

First-p
rincip

les intellig
ent ag

ent

DeepH-DFPT
DFPT
Phys. Rev. Lett. 2024 
Editor’s Suggestion

2nd-generation

First-principles 
intelligence

DeepH-UMM
Universal 
materials model
Sci. Bull. 2024 
Cover story



X. Gong, H. Li, et al., Nat. Commun. 14, 2848 (2023)

DeepH-E3: Equivariant neural networks

General equivariant framework：

 Equivariance to the E(3) group 
(Euclidean group in 3D)

 Introduce the degree of spin 
and spin-orbit coupling 

 Achieve sub-meV accuracy

24



xDeepH: For studying magnetic materials

25

H. Li, Z. Tang, et al., Nat. Comput. Sci. 3, 321 (2023) Cover story

Research Briefing：https://www.nature.com/articles/s43588-023-00425-2
Editorial：https://www.nature.com/articles/s43588-023-00451-0
News & Views：https://www.nature.com/articles/s43588-023-00434-1



Curved magnetism in CrI3 nanotube

Random 𝑅𝑅 , 𝑀𝑀

DFT

xDeepH

26H. Li, Z. Tang, et al., Nat. Comput. Sci. 3, 321 (2023) Cover story



Neural-network density functional theory

27

Physics-informed unsupervised learning (DeepH-Zero):

Coherently integrate DFT algorithms into neural networks

Y. Li, Z. Tang, Z. Chen, et al., Phys. Rev. Lett. 133, 076401 (2024) Editors’ suggestion

Supervised learning



Density functional perturbation theory (DFPT)

28

H. Li, Z. Tang, et al., Phys. Rev. Lett. 132, 096401 (2024) Editors’ suggestion

DeepH-DFPT：Bring DFT and DFPT into a unified 
deep-learning framework Efficient calculation of 
e-p coupling, BCS superconductivity, etc.

Electron-phonon coupling,  
superconducting properties



DeepH-hybrid: For hybrid-functional calculations

Generalize from Kohn-Sham DFT to generalized Kohn Sham schemes

Z. Tang, H Li, P, Lin, et al., Nat. Commun. 15, 8815 (2024)

Collaborators: Dr. Peize Lin, Prof. Xinguo Ren, Prof. Hong Jiang , Prof. Lixin He 29



DeepH-PW: Generalize to plane-wave DFT

30
X. Gong, et al., Nat. Comput. Sci. 4, 752 (2024)   

DeepH: Access to all DFT codes
 Big materials data of DFT

 Large materials model

Collaborate with Steven G. Louie



From large language model to large materials model

31

Language agent Materials agent

Large materials model

Q: What is large language model？

A: Large language model is a type of 
AI designed to understand and 
generate human-like language.

Q: High-Tc superconductors?

A: Here are some predicted 
materials:

Chat GPT Mater. GPT

Large language model

Materials databaseLanguage database



AI-driven material discovery  Big materials data

Varying atomic compositions/structures
Countless potential candidates

Rich physical properties
Complicated dependence on structure

Structures Properties
Mechanical Thermal Optical

Electrical Magnetic

Large materials model

Large Materials Model

32

Describe the universal structure-property relationship



Universal materials model of DeepH

33

Large materials model: AI-driven materials discovery

Y. Wang, Y. Li, Z. Tang, et al. Sci. Bull. 69, 2514 (2024) Cover story



Universal materials model of DeepH
~104 materials (20% for test), Averaged MAE 2.2 meV

Y. Wang, Y. Li, Z. Tang, et al. Sci. Bull. 69, 2514 (2024) Cover story

Outstanding generalization ability

34
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Outlook (1): Method development

36

 Extend the DeepH method from DFT to Beyond DFT



Outlook (2): Foundation models

37

 Develop foundation models of electronic structure

Structures Properties
Mechanical Thermal Optical

Electrical Magnetic

Large materials model



DeepH-
pack

Next-generation computing platform

+

 Training and inference 
accelerated by 300%, GPU 
memory usage reduced 
by over 100%

 Multiple types of neural 
networks to learn various 
target physical quantities

 Well-structured software 
modules

 Comprehensive user 
manual, video tutorials

38

Outstanding
performance

User
friendly

Developer
friendly

Comprehensive 
functionality



Large database of electronic structures

AI-integrated computational database 
(2,000,000 crystalline materials)

Extensive physical property data

Compatible with deep learning

Various methods and software

DeepH-pack

39



Universal materials model of electronic structure

40

Probability 
density

Cumulative 
distribution

Averaged MAE: 0.58 meV

 World’s largest training dataset (2,000,000 crystalline materials)

 First-ever model training on millions of material structures

 First universal materials model achieving sub-meV accuracy

Massive training data

Millions of materials

10TiB data

Advanced architecture

Transformer based

Explainable AI

Superior performance

Sub-meV accuracy

O(N) scaling

DeepH Group (to be published)



The new version of DeepH-pack, along with universal materials model, 
will be released soon.

DeepH-pack & Universal materials model

Universal Materials Model 
of DeepH

CMT group

41



Big materials database
AI-accelerated data generation

Outlook (3): AI-driven materials discovery

DeepH-pack

Neural-network DFT method
Improving with growing data

Large materials model
AI-driven materials discovery

42

Mater. GPT



DeepH-pack

[1] DeepH: H. Li, et al. Nat. Comput. Sci. 2, 367 (2022) arXiv: 2104.03786
[2] DeepH-E3: X. Gong, et al. Nat. Commun. 14, 2848 (2023)
[3] xDeepH: H. Li, et al. Nat. Comput. Sci. 3, 321 (2023) Cover story
[4] DeepH-DFPT: H. Li, et al. PRL 132, 096401 (2024) Editors’ suggestion
[5] MagNet: Z. Yuan, et al. Quantum Front. 3, 8 (2024)
[6] DeepH-hybrid: Z. Tang, et al. Nat. Commun. 15, 8815 (2024)
[7] DeepH-2: Y. Wang, et al. arXiv:2401.17015
[8] DeepH-PW: X. Gong, et al. Nat. Comput. Sci. 4, 752 (2024)
[9] DeepH-UMM: Y. Wang, et al. Sci. Bull. 69, 2514 (2024) Cover story
[10] DeepH-Zero: Y. Li, et al. PRL 133, 076401 (2024) Editors’ suggestion
Ab initio artificial intelligence, H. Li, et al. MGE Advances e16 (2023)
Deep-learning electronic structure calculations, Z. Tang, et al. 
Nat. Comput. Sci. (in press)

DeepH: References and open-source codes

Tutorial:  https://www.bilibili.com/video/BV1Tv4y1H7TD
DeepH: https://github.com/mzjb/DeepH-pack

https://deeph-pack.readthedocs.io

DeepH-E3: https://github.com/Xiaoxun-Gong/DeepH-E3
xDeepH:     https://github.com/mzjb/xDeepH 43

Develop deep-learning first-principles methods

https://www.bilibili.com/video/BV1Tv4y1H7TD
https://www.bilibili.com/video/BV1Tv4y1H7TD
https://github.com/mzjb/DeepH-pack
https://github.com/mzjb/DeepH-pack
https://github.com/mzjb/DeepH-pack
https://github.com/mzjb/DeepH-pack
https://github.com/mzjb/DeepH-pack
https://deeph-pack.readthedocs.io/
https://deeph-pack.readthedocs.io/
https://deeph-pack.readthedocs.io/
https://github.com/Xiaoxun-Gong/DeepH-E3
https://github.com/Xiaoxun-Gong/DeepH-E3
https://github.com/Xiaoxun-Gong/DeepH-E3
https://github.com/Xiaoxun-Gong/DeepH-E3
https://github.com/Xiaoxun-Gong/DeepH-E3
https://github.com/Xiaoxun-Gong/DeepH-E3
https://github.com/Xiaoxun-Gong/DeepH-E3
https://github.com/Xiaoxun-Gong/DeepH-E3
https://github.com/mzjb/xDeepH


Welcome to 2025 DeepH Workshop!

44
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